skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goodall, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Reproducible environmental modelling often relies on spatial datasets as inputs, typically manually subset for specific areas. Yet, models can benefit from a data distribution approach facilitated by online repositories, and automating processes to foster reproducibility. This study introduces a method leveraging diverse state-scale spatial datasets to create cohesive packages for GIS-based environmental modelling. These datasets were generated and shared via GeoServer and THREDDS Data Server Connected to HydroShare, contrasting with conventional distribution methods. Using the Regional Hydro-Ecologic Simulation System (RHESSys) across three U.S. catchment-scale watersheds, we demonstrate minimal errors in spatial inputs and model streamflow outputs compared to traditional approaches. This spatial data-sharing method facilitates consistent model creation, fostering reproducibility. Its broader impact allows scientists to tailor the method to various use cases, such as exploring different scales beyond state-scale or applying it to other online repositories using existing data distribution systems, eliminating the need to develop their own. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Collecting, storing, and providing access to Internet of Things (IoT) data are fundamental tasks to many smart city projects. However, developing and integrating IoT systems is still a significant barrier to entry. In this work, we share insights on the development of cloud data storage and visualization tools for IoT smart city applications using flood warning as an example application. The developed system incorporates scalable, autonomous, and inexpensive features that allow users to monitor real-time environmental conditions, and to create threshold-based alert notifications. Built in Amazon Web Services (AWS), the system leverages serverless technology for sensor data backup, a relational database for data management, and a graphical user interface (GUI) for data visualizations and alerts. A RESTful API allows for easy integration with web-based development environments, such as Jupyter notebooks, for advanced data analysis. The system can ingest data from LoRaWAN sensors deployed using The Things Network (TTN). A cost analysis can support users’ planning and decision-making when deploying the system for different use cases. A proof-of-concept demonstration of the system was built with river and weather sensors deployed in a flood prone suburban watershed in the city of Charlottesville, Virginia. 
    more » « less
  5. Low-lying coastal cities across the world are increasingly seeing flooding due to climate change and accompanying sea-level rise. Many such cities rely on old and passive stormwater infrastructure which cannot cope up with the increasing flood risk. One potential solution for addressing coastal flooding is implementing active control strategies in stormwater systems. Active stormwater control relies on rule-based strategies, which is not able to manage the increasing flood risk. Model predictive control (MPC) for stormwater flood management is getting attention over the past decade. However, building physics-based models for MPC in stormwater management is cost and time prohibitive. In this paper, we develop a data-driven approach, which utilizes unstructured state-space models for system identification and predictive control implementation. We demonstrate our results using two real stormwater network configurations, one from the Norfolk, VA region and another model of Ann Arbor region, MI, respectively. Our results indicate that MPC outperforms rule-based strategies by up to 60% of the Norfolk model and up to 90% of the Ann Arbor model in flood management. 
    more » « less